FACTORIAL OPTIMISATION OF THE PRODUCTION OF CYANOBIUM SP. AS SOURCE OF PIGMENTS AND ANTIOXIDANT COMPOUNDS

Fernando Pagels^{1,2}, D Salvaterra^{1,2}, HM Amaro¹, G Lopes^{1,2}, I Sousa-Pinto^{1,2}, V Vasconcelos^{1,2}, AC Guedes¹

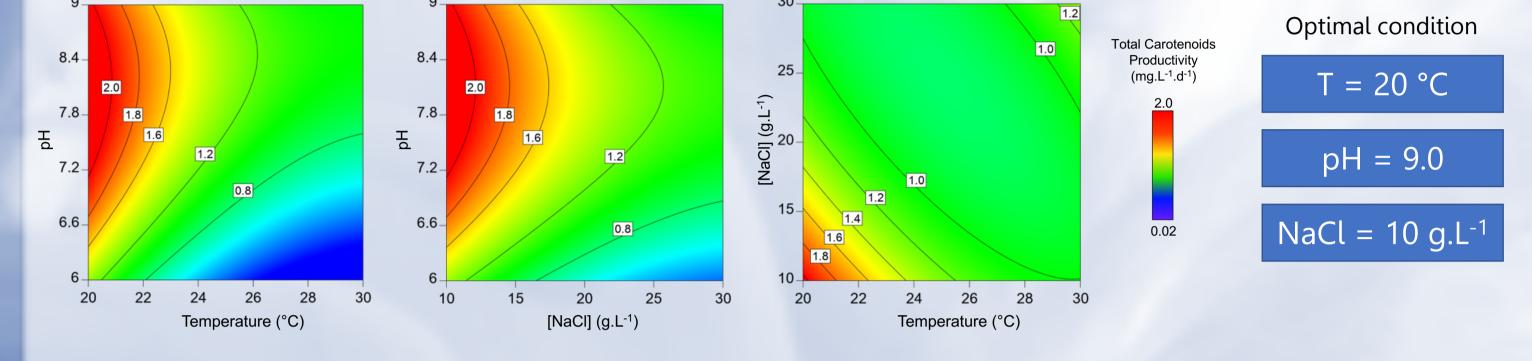
¹CIIMAR – Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Portugal ²Department of Biology, Faculty of Sciences of the University of Porto (FCUP), Portugal

INTRODUCTION RESULTS **CAROTENOIDS** The interest for cyanobacteria have Biomass PHYCOERYTHRIN increased in the last few years due to the capacity of those microorganisms **Optimal condition** PHYCOCYANIN Productivity 8.4-8.4 to produce high-valued bioactive $(mg.L_{-}^{1}.d^{-1})$ T = 20 °Ccompounds, in special pigments, 7.8-ALLOPHYCOCYANIN -1.g (g.L⁻ Нd Hd pH = 9.0 such as **phycobiliproteins** and 7.2-7.2-**CHLOROPHYLLS** carotenoids. 6.6-6.6 $NaCl = 10 g.L^{-1}$ However, two of the great constrains about cyanobacteria-based bioprocesses are the lack of knowledge on cyanobacteria basic biology and the limited number of [NaCl] (g.L⁻¹) Temperature (°C) Temperature (°C) species used by industry.

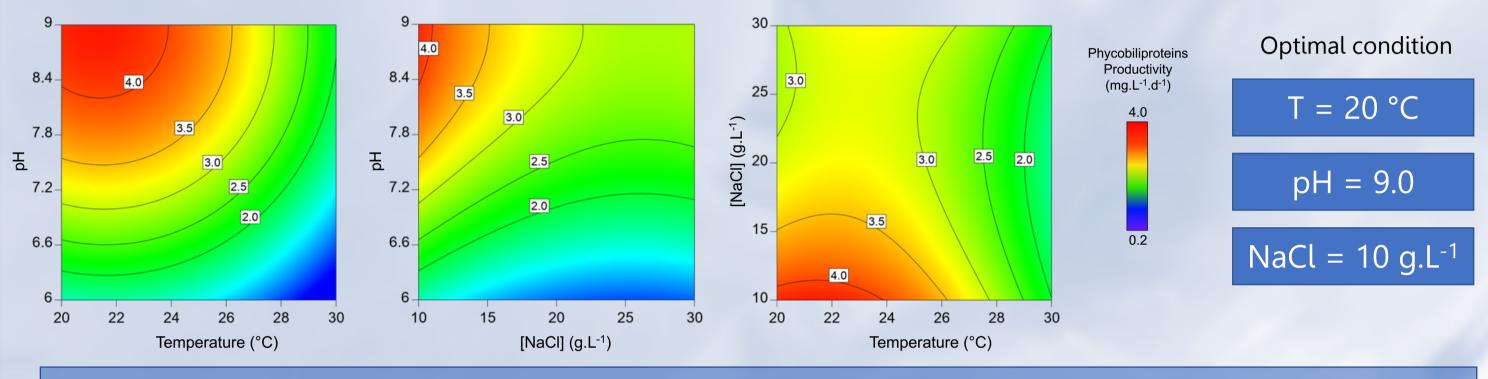
The cyanobacterium Cyanobium sp. appears as a **potential source** of high-valued compounds and its unicellular morphology can be for industrial application.

In terms of cyanobacteria production, abiotic factors have a great impact in the growth and biochemical composition. Temperature, pH and salinity are mainly responsible for the maintenance of the photosynthetic apparatus and consequentially the accumulation of pigments.

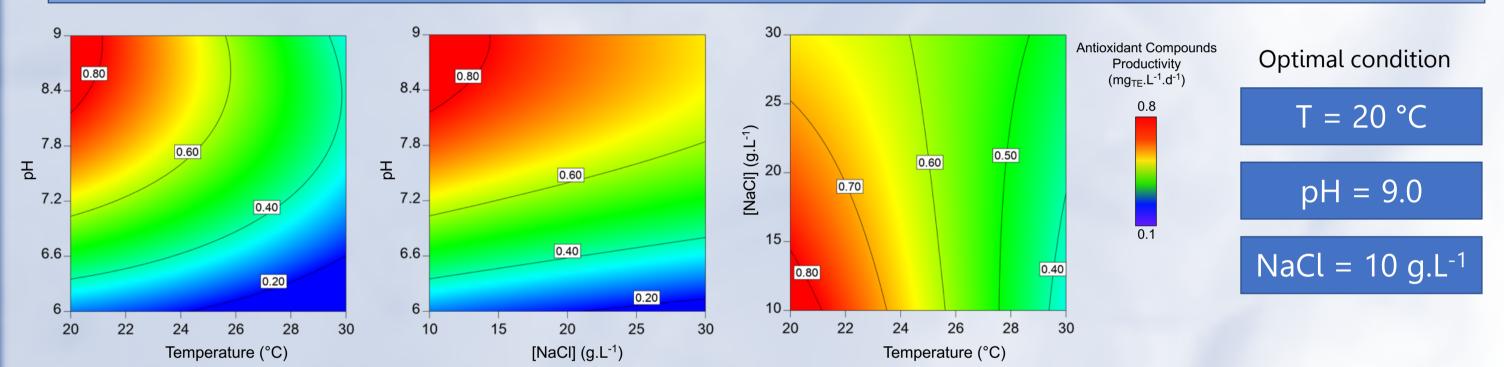
MATERIAL AND METHODS

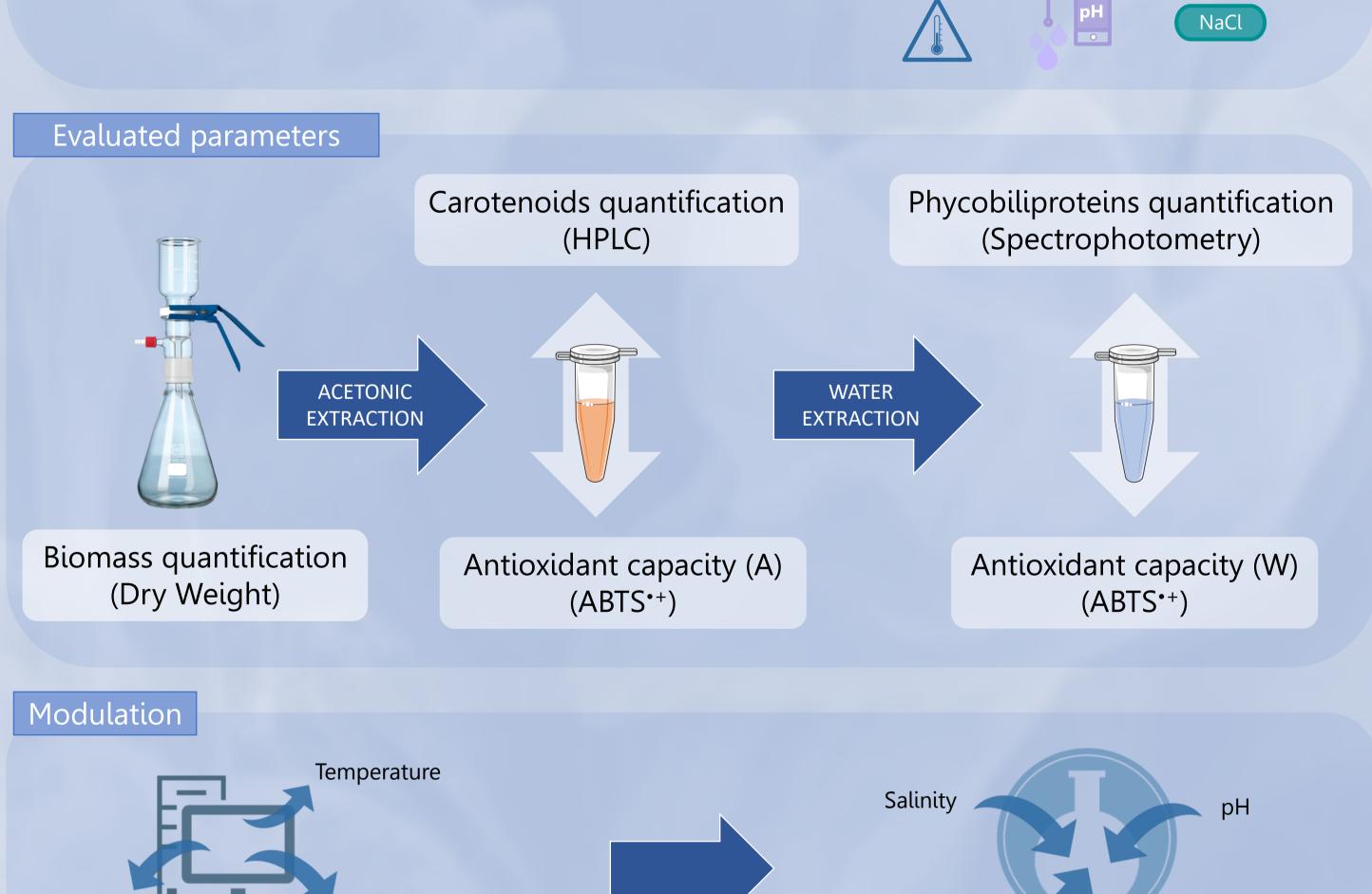

Experimental design

Cyanobium sp. LEGE 06113

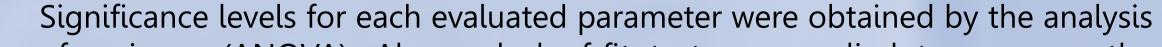

Box-Behnken design

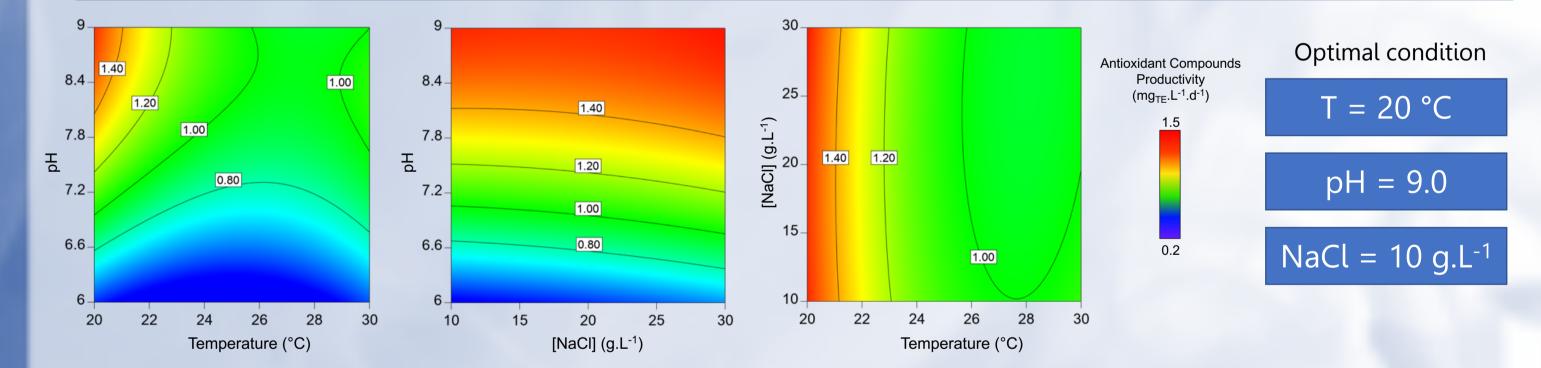
	Run	Т (°С)	рН	[NaCl] (g.L ⁻¹)
	1	20	6.0	20
	2	20	7.5	10
	3	20	7.5	30
	4	20	9.0	20
	5	25	6.0	10
	6	25	6.0	30
	7	25	7.5	20
	8	25	9.0	10
	9	25	9.0	30
	10	30	6.0	20
	11	30	7.5	10
	12	30	7.5	30
	13	30	9.0	20
TEM	1PERATURE	e pł	1	SALINITY




Carotenoids

Phycobiliproteins


Antioxidant Capacity (W)



Temperature Model validation

Statistics

Antioxidant Capacity (A)

MODEL VALIDATION

P_X (mg.L ⁻¹ .d ⁻¹)122.67 ± 17.71127.12 ± 1.300.676Antioxidant capacity - A (mg_TE.L ⁻¹ .d ⁻¹)1.55 ± 0.190.92 ± 0.060.001Antioxidant capacity - W (mg_TE.L ⁻¹ .d ⁻¹)0.84 ± 0.110.97 ± 0.070.122Total Carotenoids (mg.L ⁻¹ .d ⁻¹)2.04 ± 0.512.09 ± 0.250.986Lutein0.05 ± 0.020.06 ± 0.000.929Zeaxanthin0.25 ± 0.070.28 ± 0.010.789
Intioxidant capacity – W (mg _{TE} .L ⁻¹ .d ⁻¹) 0.84 ± 0.11 0.97 ± 0.07 0.122 otal Carotenoids (mg.L ⁻¹ .d ⁻¹) 2.04 ± 0.51 2.09 ± 0.25 0.986 Lutein 0.05 ± 0.02 0.06 ± 0.00 0.929
Total Carotenoids (mg.L ⁻¹ .d ⁻¹) 2.04 ± 0.51 2.09 ± 0.25 0.986 Lutein 0.05 ± 0.02 0.06 ± 0.00 0.929
Lutein 0.05 ± 0.02 0.06 ± 0.00 0.929
Zeaxanthin 0.25 ± 0.07 0.28 ± 0.01 0.789
Echinenone 0.15 ± 0.05 0.12 ± 0.01 0.537
β-carotene 0.72 ± 0.17 1.00 ± 0.13 0.101
Total Phycobiliproteins (mg.L ⁻¹ .d ⁻¹) 4.14 ± 0.71 3.98 ± 0.07 0.708
Phycocyanin 2.94 ± 0.50 2.79 ± 0.03 0.841
Allophycocyanin 1.20 ± 0.22 1.18 ± 0.05 0.978

of variance (ANOVA). Also, a lack-of-fit test was applied to compare the residues of the model and the observed results. The model is validated whenever the statistical significance was higher than 0.05 in the lack-of-fit test.

CONCLUSIONS

Factorial designs, such as **Box-Behnken** are fundamental for the **optimization** of cyanobacterial production, since the synergetic effects between processing take parameters must been in consideration.

Salinity

Optimal condition

For **Cyanobium sp.** the **optimal condition** for simultaneous production of **biomass**, **carotenoids**, phycobiliproteins and total antioxidant compounds is found in a T = 20 °C, pH = 9.0 and [NaCl] = 10 g.L⁻¹. The model and optimal condition were **validated** by biological experimental data.

Under optimal condition, *Cyanobium* sp. harvested biomass is composed by ca. 10 % of pigments and an antioxidant capacity of ca. 14 mg_{TE}.g_{DW}⁻¹. Providing a potential source of **bioactive compounds** for future applications (e.g. cosmetical industry).

Acknowledgements

A PhD fellowship (reference SFRH/BD/136767/2018) for author Fernando Pagels was granted by Fundação para a Ciência e Tecnologia (FCT, Portugal) under the auspices of Programa Operacional Capital Humano (POCH), supported by the European Social Fund (ESF) and Portuguese funds (MECTES). This work was financially co-supported by the strategical founding from FCT (UID/Multi/04423/2019), European Union Horizon 2020 programme - GenialG - Genetic diversity exploitation for innovative macroalgal biorefinery (ID: 727892), and the Atlantic Interreg Projects – Enhance MicroAlgae – High added-value industrial opportunities for microalgae in the Atlantic Area (EAPA_338/2016), and BLUEHUMAN – BLUE biotechnology as a road for innovation on HUMAN's health aiming smart growth in Atlantic Area (EAPA_151/2016).

