Study of structural and functional proteins in the sea anemone Actinia fragacea (Cnidaria) and potential biomedical interest

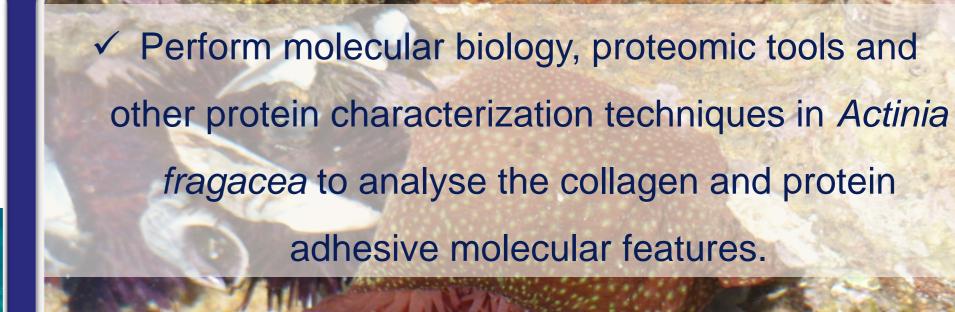
Mariana Almeida^{1,2}, Miguel Rocha^{1,2}, Tiago H. Silva^{1,2} and Rui L. Reis^{1,2,3}

¹3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal;

²ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal;

³ The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal

INTRODUCTION


AIM

Marine invertebrates provide a diverse source of proteins with several applications due to their broad structural and biological properties¹.

Cnidarians' basic features, ecology and diversity make them interesting models in different biotechnological fields (e.g. regenerative capacity; bioactive compounds; bioceramics)².

Other biotechnology interests emerged in the biomedical field, including collagens from jellyfish and adhesives proteins of hydrozoans^{3,4}.

 Provide information to the biomedical field, with focus on the development of biomaterials for tissue engineering, wound healing and drug delivery.

MATERIAL AND METHODS

Collagen acidic extraction³

	Washing and cutting	Alkaline pre- treatment	Extraction	Precipitation	Re-precipitation	Freeze-drying	✓ Extraction
	Water	0.1 M NaOH	0.5 M Acetic acid	2.6 M NaCl solution in 0.05M Tris-HCl	0.7 M NaCl		the extract/ ✓ SIRCOL as
					All phases were performed at 4 °C to		✓ Bradford As
		Water pH 7.0		(pH 7.5)	avoid collagen d	-	✓ SDS-PAGE
Collection: Praia do Aterro,	NW Portugal						✓ Fourier Tra
Adhesive protein ex	traction from th	ne pedal disk ²					Spectrosco
							Circular Di

Washing and Freezeoutting

Extraction of soluble protein fraction

Extraction of insoluble protein fraction

Characterization

- n yield: dry mass of ct/initial wet mass assay Assay ransform Infrared
 - copy (FTIR)
- Circular Dichroism (CD)

Water	cutting	uryn
	Water	

drying

Buffer: 40nM Tris-HCl, 5mM MgCl₂ 1mM Buffer: 7M urea, 2M thiourea, 4% CHAPS (w/v), 65 mM DTT, 0.8% ampholytes (v/v), at pH 4–7 DTT, protease inhibitors, at pH 8.0

Vortex Centrifugation 16,000g, 20 min, 4°C **Pellet: Soluble fraction**

Vortex Incubation overnight, 4°C Centrifugation16,000g, 20 min, 4°C ✓ Aminoacid analysis

✓ Mass Spectrometry

✓ BLAST

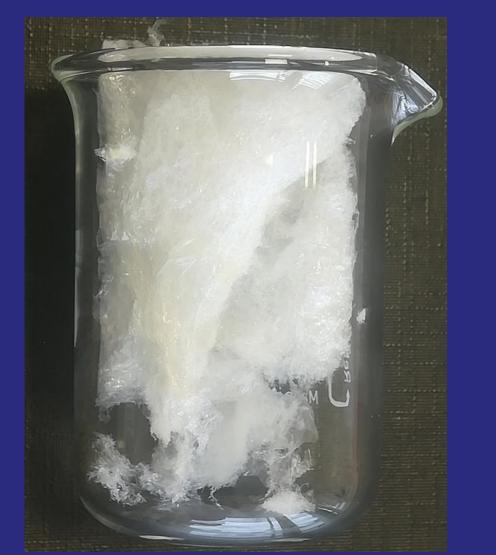
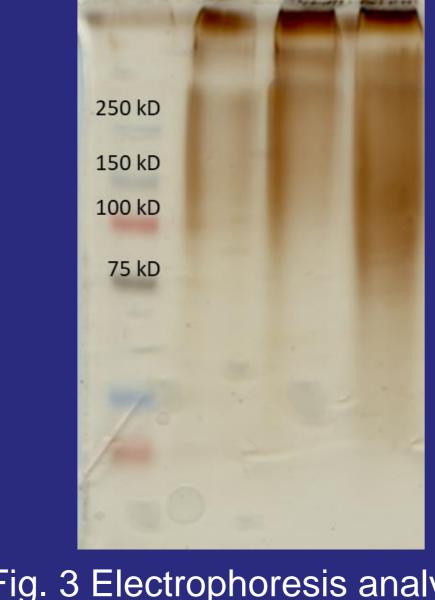
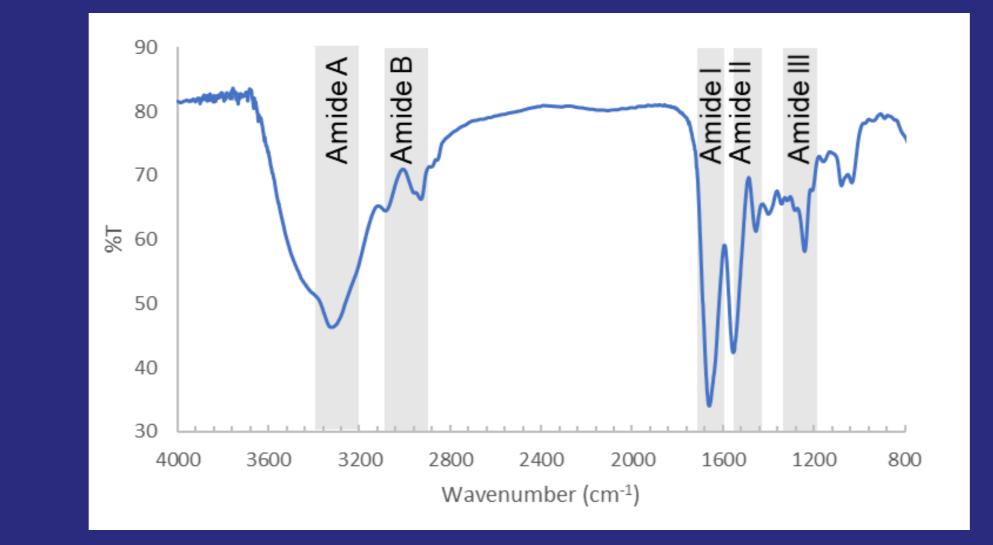




Fig. 1 Lyophilized collagen

Extraction yield: < 1%

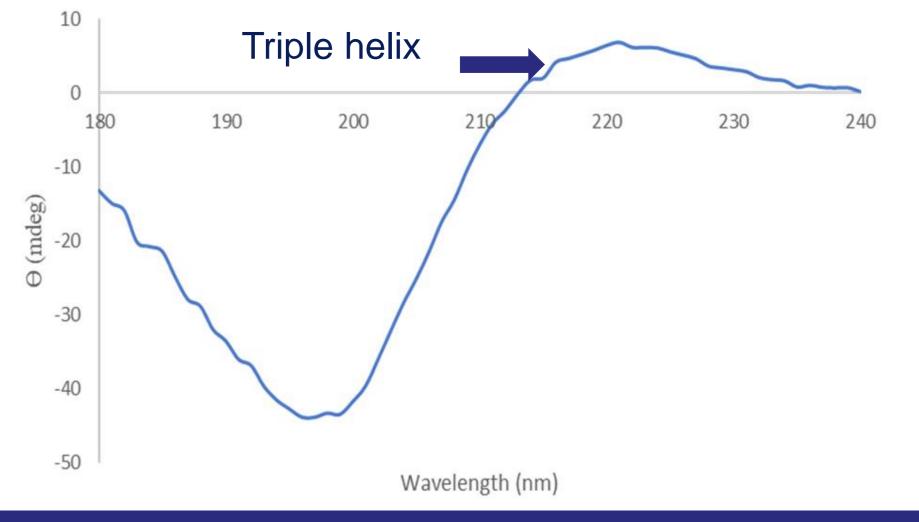


Fig. 3 CD spectra from A. *fragacea* measured at 4 °C.

OBSERVATIONS

- Very few protocols for sea anemone collagen extraction are available in literature⁶. Extraction yields could be increased with optimization of
 - collagen isolation procedure (enzymatic treatment; modification of precipitation step).
- \circ No bands were observed, suggesting the possible presence of other compounds that are not sensitive to the staining procedures employed⁷.
- FTIR and CD results are in accordance with previously described for marine collagen obtained from other marine sources^{7,8}.

Further investigation will allow to evaluate the potential of the sea anemone A. fragacea as a source of compounds of biomedical interest.

References:

¹Yang YJ, Jung D, Yang B, Hwang BH, Cha HJ 2014 Aquatic proteins with repetitive motifs provide insights to bioengineering of novel biomaterials. Biotechnol J. 9,1493-1502; ²Domínguez-Pérez D, Campos C, Rodríguez AA, Turkina MV, Ribeiro T, Osorio H, Vasconcelos V, Antunes A, 2018 Proteomic Analyses of the Unexplored Sea Anemone Bunodactis verrucosa. Mar Drugs 16, 42. ³Hoyer B, Bernhardt A, Lode A, Heinemann S, Sewing J, 2014 Jellyfish collagen scaffolds for cartilage tissue engineering. Acta Biomater 10, 883-892; 4 Stabili L, Schirosi R, Parisi MG, Piraino S, Cammarata M 2015. The Mucus of Actinia equina (Anthozoa, Cnidaria): An Unexplored Resource for Potential Applicative Purposes. Mar Drugs. 13(8), 5276-5296; 6Nordwig A, Hayduk UJ 1969. Invertebrate Collagens : Isolation, Characterization and Phylogenetic Aspects. J Mol Biol 44: 161-172; 7Rahman AM 2019. Collagen of Extracellular Matrix from Marine Invertebrates and Its Medical Applications. Mar Drugs 17(2), 118; ⁸Alves AL, Marques ALP, Martins E, Silva TH, Reis RL, 2017 Cosmetic Potential of Marine Fish Skin Collagen. Cosmetics 4, 39.

Acknowledgments:

This work was partially funded by European Union Transborder Cooperation Programme Interreg España-Portugal 2014-2020 (POCTEP) under projects 0245_IBEROS_1_E and 0302_CVMAR_I_1_P.

