

Chitosan films as a carrier of omega-3 loaded nanoemulsions: physic-chemical characterization and release behaviour on different food simulants

Ana I. Bourbon^{1*}, Miguel A. Cerqueira¹, José A. Teixeira² and Lorenzo Pastrana¹

¹International Iberian Nanotechnology Laboratory, Department of Life Sciences, Av. Mestre José Veiga s/n 4715-330 Braga, Portugal.

²Centro de Engenharia Biológica, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Introduction

Bio-based and biodegradable films loaded with active compounds can be used as an alternative to improve the shelf life of food products and add nutritional value to food. Omega-3 polyunsaturated fatty acids (omega-3 FAs) are known for their functional properties (e.g. improve cardiovascular health, improve cognitive function and decrease inflammation). However omega-3 FAs is highly susceptible to oxidation which makes their direct application in foods extremely difficult. To improve its application in food products and protect against oxidation, nano-sized emulsions emerge as a viable alternative. Lactoferrin nanoemulsions containing omega-3 FAs were incorporated in chitosan-based films and evaluated in terms of physic-chemical properties (water vapour permeability, solubility and mechanical tests). Moreover, the release behaviour of omega-3 FAs from chitosan films were studied in a lipophilic and hydrophilic release medium at 25 °C in order to predict their behaviour in food matrices. The main aim of this work was developing an active packaging to increase nutritional value of food products.

Materials and Methods

Nanoemulsions Production

Nanoemulsions loaded to chitosan edible films

Physic-chemical characterization and release properties

Results and Discussion

Nanoemulsions Characterization

Fig. 1 Size and ζ - potential of omega-3 nanoemulsions produced with 2 % (w/w) of lactoferrin stored during 69 days at 4 °C

- □ Nanoemulsions stored at 4 °C did not exhibit significant variations in size and ζ-potential values.
- \Box Nanoemulsions with 2 % (w/w) of lactoferrin presented sizes around 160 nm and a higher than +30 mV ζ-potential.
- ☐ TEM measurements showed that nanoemulsions droplets have spherical shape (Fig. 1).

Fig. 2. Influence of incorporation of omega-3 nanoemulsions in optical properties of chitosan edible films: **A)** chitosan edible films and **B)** chitosan with omega-3 nanoemulsions encapsulated.

Physic-chemical characterization and release properties of films

Table 1. Physic-chemical properties of chitosan edible films with omega-3 nanoemulsions

	WVP (g/Pa.s.m2)	Moisture (%)	Solubility (%)	Thickness (mm)	TS (MPa)	E (%)
Chitosan	2.41 x 10 ⁻¹⁰ ± 9.42 x 10 ⁻¹²	40.02 ± 0.81	38.12 ± 0.27	0.108 ± 0.012	12.12 ± 2.02	79.33 ± 1.09
Chitosan with omega-3 nanoemulsions	2.19 x 10 ⁻¹⁰ ± 2.10 x 10 ⁻¹¹	23.12 ± 0.25	22.09 ± 013	0.079± 0.156	8.23 ± 1.25	132 ± 0.98

- ☐ The addition of omega-3 nanoemulsions affected barrier properties: a decrease in water vapour permeability was observed with the incorporation of bio-based nanoemulsions.
- ☐ A decrease was observed for moisture values of chitosan edible films with nanoemulsions
- ☐ Water affinity measurements showed that chitosan edible films with nanoemulsions are more hydrophobic and consequently less water soluble.
- ☐ The addition of omega-3 nanoemulsions to chitosan films affected the mechanical properties: caused a reduction of tensile strength and an increase of elongation.

Fig. 3. Profile of omega-3 release from chitosan edible films at hydrophilic medium (10 v/v % ethanol) **(A)** and lipophilic medium (50 v/v % ethanol) **(B)**l; experimental data (•); Linear Superimposition Model (i = 1)

Conclusion

Results showed that it is possible to incorporate omega-3 nanoemulsions in edible films; this work contributes to the establishment of an approach to optimize edible films after the addition of nanostructures promoting new and enhanced functionalities of packaging materials.

Acknowledgments

The authors would like to acknowledge the funding from "Ref. 0302_ CVMar+i - Inovação industrial através de colaborações específicas entre empresas e centros de investigação no contexto de valorização biotecnológica marinha" (INTERREG España – Portugal POCTEP).