Development of Electrospun Marine-based Collagen Membranes as Biomaterial for Tissue Engineering Applications

A. L. Alves^{1, 2}, C. G. Sotelo⁴, J. A. Vázquez⁴, R. I. Pérez-Martín⁴, R. L. Reis^{1, 2, 3}, T. H. Silva^{1, 2}

¹ 3B's Research Group, i3B's – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal ²ICVS/3B's – PT Government Associate Laboratory, Braga/Guimarães, Portugal

³The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal ⁴Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello 6, Vigo, Pontevedra, Spain

INTRODUCTION

Tissue Engineering strategies seek the development of an ideal scaffold that can perfectly replicate the extracellular matrix (ECM) of the targeted tissue, giving to cells the 3D support they need for the biosynthesis of new tissues by biological stimulation on molecular level, i.e. support cell attachment, proliferation, differentiation and organization. To achieve this goal, electrospinning rises as an effective approach to fabricate scaffolds that can mimic ECM [1]. Through the control of electrospinning parameters and polymer choice, both synthetic (e.g. poly(glycolic acid) (PGA), poly(lactic-co-glycolic acid) (PLGA)) and natural (e.g. collagen, chitosan, keratin), submicron- or nanometre-scale fibres can be produced.

In the present work, we propose the use of natural polymers or blends of synthetic and natural polymers on the development of electrospun membranes to produce new biomaterials envisaging Tissue Engineering (TE) applications such as corneal, bone and wound regeneration applications, a combination of ceramic and polymer is needed taking into account the natural bone tissue composition. Formulations composed by hydroxyapatite (HAp, the major inorganic component of human bone), polycaprolactone (PCL, a biodegradable synthetic polyester) and marine-derived Collagen (Col) and Gelatin (Gel) are being studied. Marine derived collagen and gelatin stand up as an alternative to the mammals sources, which present religious and social/life style constraints, disease transmission-connected reasons (e.g. bovine spongiform encephalopathy or BSE) and potential allergenic behavior, as well as to human collagen produced by recombinant technologies, associated to high costs [2, 3, 4].

In this work, Blue shark and Atlantic cod skins, by-products from Galicians and Portuguese fishing industries, were used as raw-materials for the production of marine collagen and gelatin, further characterized to assess their purity and biochemical features. The ceramic component chosen (β-TCP/HAp) was synthesized by our group for the establishment of processing methodologies, but marine origin HAp will be further used. The different materials were electrospun in different combinations (PCL; Col/Gel; PCL + Col/Gel; PCL+HAp; PCL + Col/Gel + HAp) and characterized to address morphological (SEM), chemical (FTIR) and physical (water content) characteristics. Mechanical performance upon tensile stress will be studied, as well as biological evaluation with different cell types according to the TE application.

MATERIALS AND METHODS

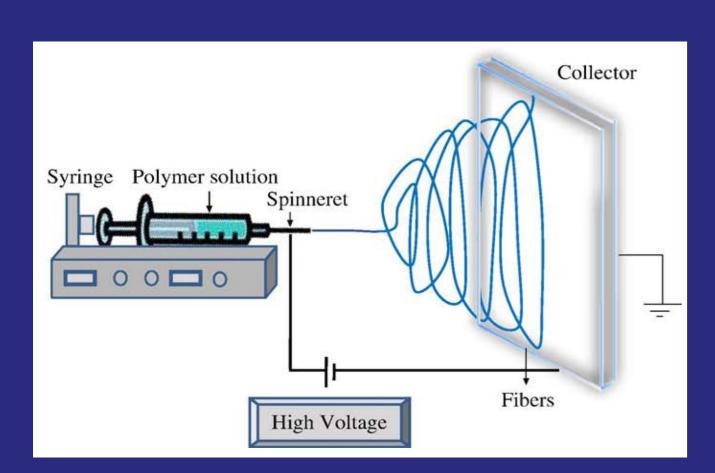
□ Samples and solutions

Gelatin

Collagen and Gelatin extracted Shark collaborators from IIM-CSIC, Vigo.

Blue Shark Collagen

- <mark>20% (w/v) Collagen</mark> and Gelatin were dissolved in 0% acetic acid under stirring.

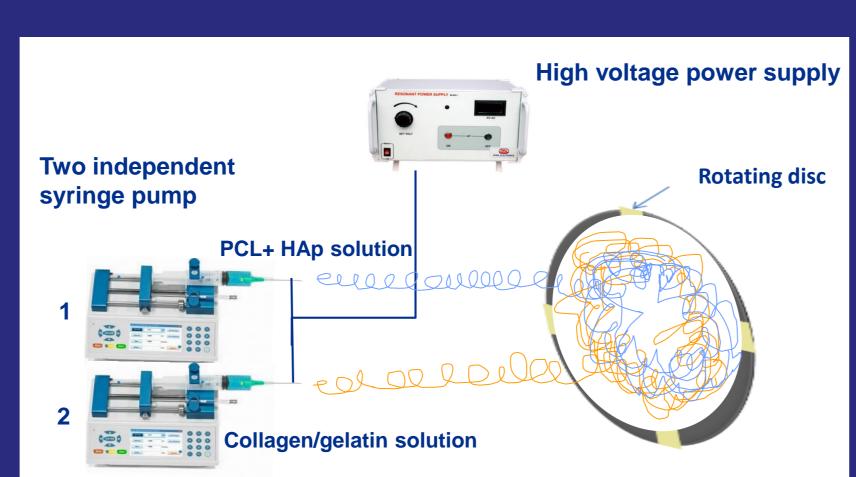


- 20% (w/v) PCL were dissolved in Glacial acetic acid under stirring and further mix with 5% (w/v) of HAp.

☐ Electrospinning set-up

Membranes for cornea regeneration

Horizontal apparatus to obtain random electrospun fibers. Adapted [5].



Electrospinning of collagen/gelatine solution.

Set-up conditions: 16 kV 14 cm 1 ml/h

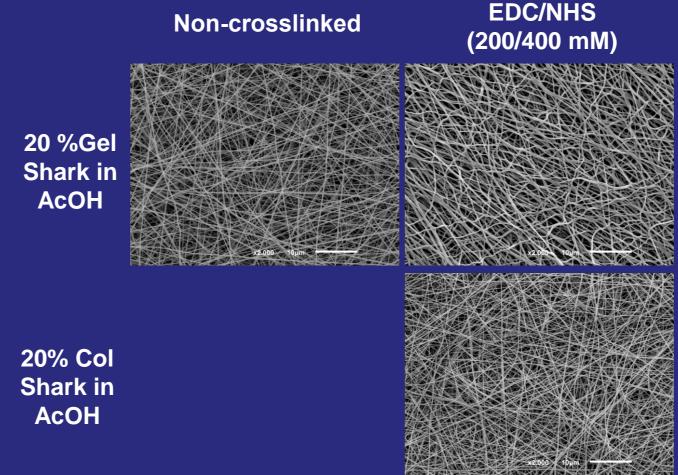
Membranes for bone/periosteum

Horizontal apparatus with two independent syringe pumps and a rotating disc as a collector.

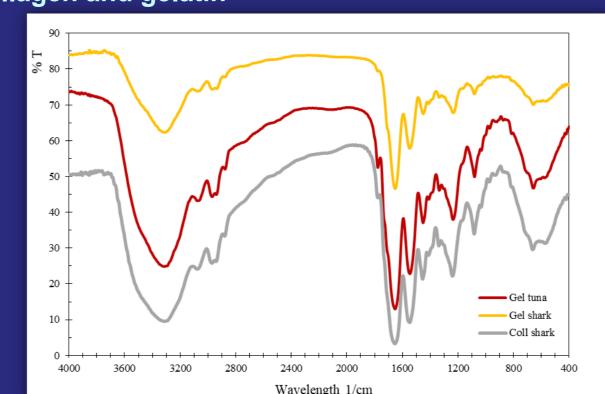
Syringe 1: 20% (w/v) PCL + 5% (w/v) HAp solution.

Syringe 2: 20% (w/v) Collagen/gelatine solution.

☐ Chemical & Physical Characterization

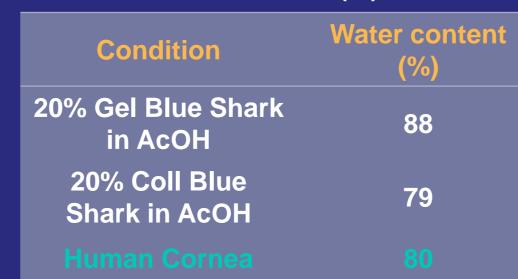

SEM FTIR Water content

RESULTS AND DISCUSSION


☐ Chemical & Physical characterization

Membranes for cornea regeneration

SEM images of gelatin and collagen nanofibers produced by electrospinning.


FTIR spectra showed the characteristic bands for collagen and gelatin

Both collagen and gelatin exhibited comparable IR absorptions.

Characteristic bands of collagen are present (Amide A, Amide B, Amide I, Amide II and Amide III).

Values for water content (%)in 0,1M PBS.

- All conditions showed similar values of water content to **Human Cornea.**
- When hydrated membranes are easy to handle and
- Stable in water (4 months) and PBS (2 months).

PCL+HAp2

fiber but also impregnated the fiber.

Characteristic bands of gelatin are present (Amide A, Amide B, Amide I, Amide II and Amide III).

Membranes for bone/periosteum

SEM images of blending of Gel+PCL+HAp nanofibers

- Membranes are fragile and very difficult to detach from parchment

It was observed the presence of HAp particle on surrounding the PCL

FTIR spectra showed the characteristic bands for PCL; Col/Gel;

The membranes present a lot of PCL beads and HAp agglomerates.

PCL + Col/Gel; PCL+Hap; PCL + Col/Gel + HAp

Ceramic

P = 8.3

Ca = 16.2

Ceramic

P = 7.5

Ca = 13.9

content (wt%)

content (wt%)

produced by electrospinning.

- The C_O, C=O, and C=H bands were related to PCL and the P = O and O = H bands were attributed to HAp.

FINAL REMARKS AND CONCLUSION

Membranes for cornea regeneration

- Optimize the crosslinking strategy;
- **❖** Evaluate the mechanical properties and optical features of the membranes;
- ❖ Analyse the cytotoxicity and bioactivity of these membranes using corneal-derived cells.

Membranes for bone/periosteum

- **❖** We think that acetic acid is degrading the PCL and HAp particles.
- **❖** Change the solvent of PCL for Chloroform : DMF to get better fibbers.
- **❖** Evaluate the mechanical properties and optical features of the membranes;
- **❖** Analyse the cytotoxicity and bioactivity of these membranes using osteoprogenitor cells.

The obtained results confirmed the successful electrospinning of marine collagen/gelatin membranes with smooth surface and porous structures. The membranes for corneal applications showed a water content value close to the Human cornea, demonstrating that could be good to retain tissue fluid and keep the nutrients in corneal tissue. This work showed the potential of using codfish skin collagen as a sustainable and low-cost platform for biotechnological valorization of codfish by-products towards biomedical applications.

References: [1] Neves, N. M. (Ed.)., Electrospinning for Advanced Biomedical Applications and Therapies. Smithers Rapra. 2012, 1-3 [2] Silva et al., Mar. Drugs., 2014, 12, 5881-5901 [3] Silvipriya et al., J. Appl. Pharm. Sci., 2015, 5 (03), 123-127 [4] Jenkings et al., J. Am. Coll. Surg., 2010, 210 (4), 402-410

Acknowledgments:

This work was partially funded by European Union Transborder Cooperation Program Interreg España-Portugal 2014-2020 (POCTEP) under projects 0245_IBEROS_1_E and 0302_CVMAR_I_1_P and by FCT Doctoral Program Do*Mar (ALA scholarship: PD/BD/127995/2016). Dr. Catarina Marques is acknowledged for the provision of synthesized calicum phosphates for the establishment of processing methodologies.

[5] Bhardwaj N., Kundu S.C; Biotechnology Advances, 28 (2010) p.325–347.

